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This Supplemental Material is organized as follows. In Sec. I, the mode equations in the main text are derived, with
the analytical form of drift flow terms and the noise terms. In Sec. II, the trajectories and topologies for the different
long-term states are analyzed in the transformed space, revealing two different topological structures. In Sec. III,
the noisy response of the system is calculated in long-term and the exact noise resonance frequencies are specified.
In Sec. IV, the dynamical potential is defined and the derivation of different types of synchronization transitions is
presented. In Sec. V, the emergence of the hysteresis loop is explained by means of a perturbative analysis. The
symbols used in this material share the same meaning with those in the main text.

I. DERIVATIONS OF MODE EQUATIONS

The dissipative evolution of the system is described by the Lindblad density-matrix equation (ℏ = 1 hereafter),

ρ̇ = −i[H, ρ] +
∑
j=1,2

(
GjD[a†j ]ρ+

Rj

2
D[a2j ]ρ

)
, (S1)

H =
∑
j=1,2
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†
jaj +
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2
δj(a

†
jaj)

2

]
+ g(a†2a1 + a†1a2), (S2)

where D[o]ρ = 2oρo† − o†oρ − ρo†o. By setting R1 = R2 = R > 0, G1 = G2 = G > 0 and δ1 = δ2 = δ > 0, the
evolution of the Wigner function in the coherent-state representation is written as

d
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W (α1, α2, ᾱ1, ᾱ2). (S3)
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By further defining Λ = (α1, α2), Eq. (S3) is rewritten as a neat form

d

dt
W (Λ, Λ̄) = −f(Λ, Λ̄) · ∇W (Λ, Λ̄)+D(Λ, Λ̄) : ∇∇W (Λ, Λ̄) +

R

8
(Λ, Λ̄)⊺ · ∇∇† · ∇W (Λ, Λ̄)︸ ︷︷ ︸

Noise terms

, (S4)

where ∇ = (∂α1 , ∂α2 , ∂ᾱ1 , ∂ᾱ2)
⊺, the drift flow function

f(Λ, Λ̄) =

(G+R− i∆)α1 − (R+ iδ) |α1|2α1 − igα2

(G+R)α2 − (R+ iδ) |α2|2α2 − igα1

(G+R+ i∆) ᾱ1 − (R− iδ) |α1|2ᾱ1 + igᾱ2

(G+R) ᾱ2 − (R− iδ) |α2|2ᾱ2 + igᾱ1

 , (S5)

and the diffusion matrix

D(Λ, Λ̄) =


0 0 G−R

2 +R|α1|2 0
0 0 0 G−R

2 +R|α2|2
G−R

2 +R|α1|2 0 0 0
0 G−R

2 +R|α2|2 0 0

 . (S6)

Under the rescaled time τ = Gt, the first linear drift term of the right part in Eq. (S4) is invariant under the scale

transformation αj → Aαj with A =
√

G/R, while its second and third noise terms are of A−2 and A−4. Typically,
the photon number is extremely large in a lasing system with A2 ≫ 1, so that the second and third noise terms can
be eliminated. Here the nonlinear noise terms gives the analytical formula in Eq. (2) in the main text. The linear
drift term portrays explicit trajectories in the phase space [S1].
In order to explore the effect induced by the drift term, a Dirac delta function is set to be the initial condition, i.e.,

d

dt
W (Λ′, Λ̄′) = −f(Λ′, Λ̄) · ∇′W (Λ′, Λ̄′), (S7)

W (Λ′, Λ̄′)|t=0 = δ(Λ′ −Λ, Λ̄′ − Λ̄). (S8)

The solution of Eq. (S7) is still a delta function δ(Λ′ −Λ(t), Λ̄′ − Λ̄(t)) with a moving center Λ(t), whose evolution
equation is given by

(Λ̇, ˙̄Λ)⊺ = f(Λ, Λ̄). (S9)

Substituting the parametric form, αj = Arje
iϕj , into Eq. (S9) yields

ṙ1 = −r31 + r1 − g̃r2 sin(ϕ), (S10)

ṙ2 = −r32 + r2 + g̃r1 sin(ϕ), (S11)

ϕ̇ = −∆̃− δ̃(r21 − r22)− g̃
r22 − r21
r1r2

cos(ϕ), (S12)

where δ̃ = δ/R, ∆̃ = (ω10−ω20)/G, g̃ = g/G and τ = Gt are the dimensionless parameters. Based on Eqs. (S10)-(S12),
three different long-term evolutions can be calculated, as shown in Fig. 2 of the main text.

II. TRAJECTORIES AND TOPOLOGIES

In the main text, the synchronized, limit cycle and unsynchronized states have been demonstrated in the light
of Eqs. (S10)-(S12). Moreover, in the synchronized state the temporal translational symmetry (TTS) is preserved
because both the amplitudes and phase difference of two cavity modes remain invariant, while the TTS is broken in
the unsynchronized and limit cycle states. Here we demonstrate that these long-term states have different trajectories
and topologies by introducing the following transform

x =
1√
2
(r1 + r2) cos(ϕ), (S13)

y =
1√
2
(r1 + r2) sin(ϕ), (S14)

z =
1√
2
(r1 − r2). (S15)
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Figure S1 shows the mapping from the orthogonal space (r1, r2, ϕ) into the transformed space (x, y, z) with x2+y2 > z2.
In this transformed space, the regions within the upper and lower cones are forbidden, while the points with the same
z coefficient on the cone surface are topologically adhered [S2].

FIG. S1: (a) Orthogonal space (r1, r2, ϕ). (b) The transformed space (x, y, z) with a clear topological structure. The dashed
axis stands for the singular axis in this transformed space.

In Fig. S2, the long-term trajectories of three different states are plotted. As shown in Fig. S2(a), the unsynchronized
trajectory encircles the singular axis (x = y = 0) of the transformed space (x, y, z), while the synchronized and limit
cycle trajectories do not [see Figs. S2(b) and S2(c) respectively]. These mean that these three states have different
topologies. To show this, a character number χ is defined to be the average loops encircling the axis each period [S2],
i.e.,

χ =
T0

2π
lim

T→∞
| 1
T

∫ T

0

dt(ω1 − ω2)|. (S16)

The axis in the main text is represented by the cross in Fig. 2a3-c3 as equivalent projection of the singular axis here
in transformed x-y plane, and the character number Eq. (3) in main text shares the meaning and form in this section.
Numerical simulation shows that the synchronized trajectory has the character number χ = 2π, while it becomes
χ = 0 in both the synchronized and limit cycle trajectories. According to the different symmetries and topologies,
the three long-term states are classified as shown in the Table I.

FIG. S2: Trajectories for the uncynchronized (a), limit cycle (b) and synchronized (c) states in the transformed space, with
the corresponding character numbers χ.

Supplementary Table I: Classification of the different long-term states

State TTS Character number χ
Unsynchronized Broken 1
Limit Cycle Broken 0
Synchronized Unbroken 0
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III. NOISE ANALYSIS

The second and third order terms in Eq. (S4) denote the noisy motion in the phase space. Here we consider the
leading second order term (in orders of A−2) to demonstrate how synchronization affects the background noises. By
introducing the frequency domain noisy operators n1(ω) and n2(ω), which satisfy,

n1(ω)
n2(ω)

n†
1(ω)

n†
2(ω)

(
n1(ω) n2(ω) n†

1(ω) n†
2(ω)

)
∝ D(Λs, Λ̄s), (S17)

the evolutions of the response operators δa1(ω) and δa2(ω) around the synchronized state are
∂f(Λ, Λ̄)

∂(Λ, Λ̄)
+ iωI − iωs

1 0
0 1

−1 0
0 −1


︸ ︷︷ ︸

η



δa1
δa2
δa†1
δa†2

 =


n1

n2

n†
1

n†
2

 . (S18)

Here ωs is the frequency of the synchronized mode. Such approximation can also be applied in the unsynchronized
and limit cycle states. Thus, the total responsive noise spectrum intensity

(
δa†1 δa†2 δa1 δa2

)
δa1
δa2
δa†1
δa†2

 =
(
n†
1, n

†
2, n1, n2

)[∂f(Λ, Λ̄)

∂(Λ, Λ̄)
+ iωI − iωsη

]−1† [
∂f(Λ, Λ̄)

∂(Λ, Λ̄)
+ iωI − iωsη

]−1


n1

n2

n†
1

n†
2

 .(S19)

The resonance is achieved when the eigenvalues of ∂f(Λ, Λ̄)/∂(Λ, Λ̄) has the same imaginary part ωF = ω± ωs. The
synchronized state achieved through different transitions has difference background noise distribution. In a first-order
transition, ωF = 0 and the resonance is achieved exactly at the synchronization frequency ωs. However, in a second-
order transition, ωF ̸= 0 and the resonance is shifted from ωs at ±ωF , as plotted in Fig. 1d of the main text. For the
limit cycle state g̃ ≈ g̃c in Fig. 1c, the limit cycle mode is exited with a large amplitude. In the unsynchronized regime
like g̃ ≈ 0, the modes are in the stand-alone oscillation. The noise intensity is the direct superposition of individual
oscillators, as shown in Fig. 1b.

IV. THE DYNAMICAL POTENTIAL AND PHASE TRANSITION

The realization of the synchronized state requires both the existence and stability of a fixed point governed by the
Eqs. (S10)-(S12). The fixed point always exists according to

f1 = −r31 + r1 − g̃r2 sin(ϕ) = 0, (S20)

f2 = −r32 + r2 + g̃r1 sin(ϕ) = 0, (S21)

f3 = −∆̃− δ̃(r21 − r22)− g̃
r22 − r21
r1r2

cos(ϕ) = 0. (S22)

The stability requires the fixed point to be robust against perturbation, which relies on the local divergence of the
trajectories. To analyze the divergence near the fixed point, a real-value dynamical potential V (Λ, Λ̄) is defined as

∇† · ∇V (Λ, Λ̄) = −∇ · f(Λ, Λ̄). (S23)

According to Eq. (S9), the change of the dynamical potential near the arbitrary point (Λ, Λ̄) is given by

V (Λ+∆Λ, Λ̄+∆Λ̄)− V (Λ, Λ̄) ≈ −1

2
(∆Λ̄,∆Λ)·f(Λ+∆Λ̄, Λ̄+∆Λ)− 1

2
f†(Λ+∆Λ̄, Λ̄+∆Λ)·(∆Λ̄,∆Λ)†, (S24)

which is −d(∆Λ ·∆Λ†)/dt in other words. In the vicinity of the fixed point (Λs, Λ̄s),

V (Λs +∆Λ, Λ̄s +∆Λ̄) = V (Λs, Λ̄s)−
1

2

[
(∆Λ̄,∆Λ) · J · (∆Λ̄,∆Λ)† +H.c.

]
+ · · · , (S25)
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where J = ∂f(Λ, Λ̄)/∂(Λ, Λ̄) stands for the Jaccobi matrix. A stable fixed point requires −d(∆Λ† ·∆Λ)/dt < 0 for
any small perturbation ∆Λ, which means that the fixed point has to be the local minimum of the dynamical potential.
Equation (S25) shows that the distribution of the dynamical potential near the fixed point is explicitly given by the
eigenvalues of J together with its eigenvectors. The most important parameter affiliated to J is the largest Lyapunov
exponent L, as the largest real part among the eigenvalues of J [S3]. The local minimum is realized only if L < 0.
As is achieved in Eq. (S10)-(S12), the total phase ϕ1 +ϕ2 is not involved in the evolution, thus J always has a zero

eigenvalue corresponding to ϕ1 +ϕ2. For the rest parameters (r1, r2, ϕ), the reduced Jacobian matrix JR is defined as δṙ1
δṙ2
δϕ̇

 = JR(r1, r2, ϕ)

 δr1
δr2
δϕ

 , (S26)

where

JR(r1, r2, ϕ) =


∂f1
∂r1

∂f1
∂r2

∂f1
∂ϕ

∂f2
∂r1

∂f2
∂r2

∂f2
∂ϕ

∂f3
∂r1

∂f3
∂r2

∂f3
∂ϕ

 . (S27)

It is easily verified that JR is a projected representation of the global J in the subspace, and thus has the same
non-zero eigenvalues as J. This means that the fundamental properties of the dynamical potential can be revealed by
studying JR.
As JR has purely real components, its eigenvalues would be all real values or one real value with a pair of conjugated

solution. Let the eigenvalues of JR be l1, l2 and Re(l1) ≥ Re(l2) ≥ Re(l3), and the basis vectors ei are defined to be
the li-eigenvectors. In this case, the dynamical potential is transformed to the following quadratic form,

V = −
∑

i=1,2,3

Re(li)|xi|2, (S28)

xi = ei ·Ω
(
∆Λ⊺

∆Λ̄⊺

)
, (S29)

where Ω corresponds to the projection matrix from the normal frame and (Λ, Λ̄) is here defined in the frame spanned
by e1, e2 and e3. Near the transition point L = 0, there exists two cases of the eigenvalues,

l1 =

{
L > Re(l2) ≥ Re(l3), case I

L+ iωF = l̄2, and L > Re(l3), case II
. (S30)

For the case I given that L = b0(g̃c − g̃), where b0 = −dL(Λs(g̃), Λ̄s(g̃))/dg̃ > 0, we simplify the dynamical potential
in Eq. (S25) as

V = −b0(g̃c − g̃)x2
1 −Re(l2)|x2|2 − Re(l3)|x3|2︸ ︷︷ ︸

Positive definite part

. (S31)

Here x1 coincides with x defined in Eq. (5) in the main text, and the coeicient b0 is the same. Now that the eigenvalue
is purely real, the displacement grows exponentially along the direction of eigenvector with g̃ < g̃c, which indicates
the emergence of the unsynchronized state. Judging from the dynamical potential in Eq. (S31), the transition from
the synchronized state to the unsynchronized state is of first-order at g̃c.
For the case II, the conjugated pair (l1, l2) always has the same real part and the instability onsets in the (e1, e2)

plane. At the transition point L = 0, a series of periodic solutions are written as ρ · eiωF t

ρ · e−iωF t

0

 = Ω

(
∆Λ⊺

∆Λ̄⊺

)
, (S32)

where ρ =
√

|x1|2 + |x2|2 stands for the variable radius of the perturbation circle and ωF > 0 without of loss of
generality. The dynamical potential here just describes the expansion property of trajectories while the rotational
information is eliminated. Different from the former one-dimensional case where the largest Lyapunov exponent
corresponds to a purely real eigenvalue, it should be calculated along the circular trajectory as a correction to the
incomplete information of argument. The temporal averaging correction is done by integration [S4]

⟨V ⟩ = ωF

2π

∫ 2π/ωF

0

dt V (Λcircle, Λ̄circle), (S33)
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where

(Λcircle, Λ̄circle)
⊺ = Ω−1

 ρ · eiωF τ

ρ · e−iωF τ

0

 . (S34)

FIG. S3: The zoomed-in view of limit cycle in the orthogonal space (r1, r2, ϕ). The stable region L < 0 is shaded. The
limit cycle is across the boundary in agreement with the reduced two-dimensional motion. The factors b1 = 0.00437246 and
b2 = −0.0234752 are calculated in verification of the theory presented in the text.

With e1/
√
2 + ie2/

√
2, e1/

√
2− ie2/

√
2 and e3 as the basis vectors, the reduced Jacobian has a diagonal block

JR =

 L ωF 0
−ωF L 0
0 0 l3

 . (S35)

When the coupling strength g̃ ≈ g̃c, L ∝ (g̃c − g̃) and L ≪ ωF . Further expansion into the higher-order term is
performed with

L = b0(g̃c − g̃) +
∑

i=1,2,3

xi
∂L
∂xi

+
∑

i,j=1,2,3

1

2
xixj

∂2L
∂xi∂xj

. (S36)

The diagonal part

(
L 0
0 L

)
as arbitrary small perturbation against

(
0 ωF

−ωF 0

)
can be separated, and the averaging

correction in the radial direction ρ is given by

⟨V ⟩ = −ωF

2π

∫ 2π/ωF

0

dτ
(
ρ sin(ωF τ) ρ cos(ωF τ)

)(L 0
0 L

)(
ρ sin(ωF τ)
ρ cos(ωF τ)

)
. (S37)

Combining Eq. (S36) and Eq. (S37), the averaged dynamical potential is expanded as

⟨V ⟩ = −ωF

2π
b0(g̃c − g̃)ρ2 +

ωF

8π

(
∂2L
∂x2

1

+
∂2L
∂x2

2

)
ρ4. (S38)

Equation (S38) gives out the form of Eq. (6) in the main text by redefining b1 = ωF b0/2π and b2 = ωF (∂
2L/∂x2

1 +
∂2L/∂x2

2)/8π. As long as b2 < 0 is satisfied, the double-well type potential is achieved, presenting a second-order
transition at the critical point g̃c. When g̃ < g̃c and b2 > 0, the radial displacement stops growth at the shifted
minimum as a result of the double well, which corresponds to the generation of the limit cycle state. For demonstration,
the limit cycle of the orthogonal space (r1, r2, ϕ) is plotted in Fig. S3, when ∆̃ = 0.3, δ̃ = 0.1 and g̃ = 0.398. The
trajectory balances near the boundary between the stable and the unstable regions. The averaged dynamical potential
in the vicinity of the fixed point r1 = 0.651228, r2 = 1.09682, ϕ = 2.10801 is calculated according to Eq. (S38) with
b1 = 0.00437246 and b2 = −0.0234752.
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During different types of transitions, the behaviors of the topological character are distinct. In the first-order
transition [see Fig. S4(a)], the topological character number χ is variant due to the drastic transition between a
fixed point and a trajectory encircling the singular axis. In the second-order transition [see Fig. S4(b)], the gradual
expansion and contraction of limit cycle promise the invariant χ, because both the arbitrarily small limit cycle and
the fixed point do not encircle the singular axis.

FIG. S4: Topological character is variant or invariant during the first-order (a) or the second-order (b) transition.

V. HYSTERESIS BEHAVIOR

The hysteresis process is realized by varying the coupling strength at an extremely slow rate with different (∆̃, δ̃).
The emergence of the frequency looking under the critical coupling strength can be explained via the following equation

(Λ̇s +∆Λ̇, ˙̄Λs +∆ ˙̄Λ) = f(Λs +∆Λ, Λ̄s +∆Λ̄). (S39)

Its second-order temporal derivation is given by

(Λ̈s +∆Λ̈, ¨̄Λs +∆ ¨̄Λ) = (Λ̇s +∆Λ̇, ˙̄Λs +∆ ˙̄Λ) · ∂f

∂Λ
+ ˙̃g

∂f

∂g̃

∣∣∣∣
Λs+∆Λ

, (S40)

which is further simplified as

(∆Λ̈,∆ ¨̄Λ)− (∆Λ̇,∆ ˙̄Λ) · ∂f

∂Λ
− ˙̃g(

d

dg̃

∂f

∂Λ
)∆Λ = −(Λ̈s,

¨̄Λs). (S41)

Equation (S41) is a perturbed linear differential equation, which can be solved by eigenvalue analysis of the matrix
M = d

dg̃
∂f
∂Λ , i.e.,

Det(λ2I− λJ− ˙̃gM) = 0. (S42)

With the assumption in Sec. IV, M = −b0I. In the (e1/
√
2+ie2/

√
2, e1/

√
2−ie2/

√
2) plane, Eq. (S42) is explicitly

simplified as ∣∣∣∣ λ2 + b0(g̃c − g̃)λ+ ˙̃gb0 −ωFλ
ωFλ λ2 + b0(g̃c − g̃)λ+ ˙̃gb0

∣∣∣∣ = 0. (S43)

When ˙̃gc ̸= 0, two non-zero eigenvalues

λ± =
˙̃gb0

b20(g̃c − g̃)2 + ω2
F

[b0(g̃c − g̃)± iωF ] , (S44)

which can be easily approached with the eigenvalues of − ˙̃gJ−1
R M by eliminating the λ2 term in Eq. (S42) (the

decoupled degree ϕ1 + ϕ2 is not involved in this process and here JR instead of J in Eq. (S25) gives the perturbed
eigenvalues).

Equation (S43) has two solutions λ± = 0, which do not work at ˙̃g = 0. When ωF = 0 and ˙̃g ̸= 0, the transition is
of first-order, and λ± go divergent as a result of the singularity of J−1

R at the point g̃c = g̃ in Eq. (S44). At g̃ = g̃c,
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λ± jump from +∞ to −∞ in both the forward and backward trips. Thus the synchronization is always drastic at
g̃ = g̃c for arbitrary small ˙̃g. When ωF ̸= 0 and ˙̃g ̸= 0, the transition is of second-order, and in both the trips the real
parts of λ± transit from +ϵ to −ϵ at g̃c, where ϵ is an infinitesimal. In the forward trip, the trajectories are far from
the fixed point Λs, and λ± will not be involved in the dynamics until the synchronization is achieved. However, in
the backward trip, the dynamics switch into the branch governed by λ± from the fixed point Λs. A hysteresis loop is
finally generated due to the switching of different branches [S5].
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